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NOMENCLATURE
C Chord

d Chordwise coordinate measured from leading edge
(Fig. 3a)

dA Infinitesimal area of, helical sheet

dt Infinitesimal length of vortex line element

D Propeller diameter

V C
f0  -- rR

v s D

f1 1f " "*" '8 Functions of x (Eq. 10)

g Number of blades

G Nondimensional bound circulation

Ah Nondimensional camber offset (Fig. 13)

k Ratio of the strength of a line element of '-ce vorticity
at any chordwise station to that at the traiing edge

L Distance from the stacking line to the leading edge of
blade section (Fig. 3a)

r Radial coordinate

rR .catio of percent thickness of b:ade section at any span-
wise station to percent thickness at reference station

R Propeller radius

S Distance from a point on one of 'hie blades to point p

v Local axial inflow velocity to prope,.e-

vs  Forward speed of propeller relative ", undisturbed fluid

V Relative velocity of blade section and flui, ,Fig. 12)

W Induced velocity

Wy Normal component of induced velocity

AWY! Contribution to W- from the singularity region

x Nondimensional radial coordinate (Eq. 7)

x A  Nondimensional radial coordinate measured "rom center
of chordwise strip or center of singularity :'gion
(Fig. 7, 9, 11)
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X, Y, Z Nondimensional rectangular coordinate systemat pro-
peller axis (Eq. 7)

X', Y', Z' Rectangular coordinate system at propeller axis (Fig. 1)
X', Y', Z' Rectangular coordinate system on helical sheet (Fig. 2)

y Nondimensional chordwise coordinate (Eq. 4)

ya Nondimensional chordwise coordinate measured from
center of spanwise strip or center of singularity region
(Fig. 4, 7)

z Nondimensional half-thickness of blade (Fig. 12)

* Angle defining points on helical sheets (Fig. 1)

a Angle defining points of helical sheets measured from
center of singularity region

Pitch angle of helical sheets (Fig. 1)

y Variation of pitch angle from lifting-line value

r Bound circulation

r Strength of vortex line element

rj Sou:cce strength

X x tanP

L Surface source density

4, Source potential

tl Angle describing stacking-line locations (Fig. 1)

w Angular velocity of propeller

SUBSCRIPTS

B Due to bound circulation

F Due to free vorticity

p Corresponding to the singularity point p

T Due to blade thickness

V
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INTRODUCTION

The existing marine propeller design methods that can be utilized
without a high-3peed computer are normally built up from optimum
propeller lifting-line theory, two-dimensional slender-airfoil theory,
and correction factors applied to the two-dimensional results to account
for three-dimensional effects. Of these methods the most comprehen-
sive is probably that of Eckhardt and Morgan (Ref. 1).

Since these methods are applied to non-optimum propellers of es-
sentially arbitrary blade shape and even to wake-adapted propellers,
close examination of their underlying aasumptions raises some ques-
tion about their ability to produce satisfactory propeller designs. For
example, the induced velocities at the lifting line predicted by optimum
propeller theory are positive at all spanwise stations on the blade.
However, as Lerbs (Ref. Z) points out, and as is substantiated by the
present work, non-optimum propellers may and normally do have
rather large negative induced velocities near the hub and the tip. Also,
the camber correction factors that usually have been obtained from the
work of Ludwieg and Ginzel (Ref. 3 and 4) are applied to both free-
running and wake-adapted propellers of arbitrary blade shape, circu-
lation distribution, and advance ratio. Since the Ludwieg and Ginzel
calculations were made for only a few cases of free-running propellers;
rather crude interpolations on extrapolations are necessary. Further-
more, the pitch correction factor proposed by Lerbs (Ref. 5) and used
in the Eckhardt and Morgan method is derived on the assumption that
the propeller is developing lift by angle of attack and is then applied to
propellers developing lift by camber. Inconsistencies such as these
may be the cause of the inadequacies of these methods, because ex-
perience has shown that they do not always lead to satisfactory pro-
peller designs, particularly when cavitation resistance is concerned.

Lack of confidence in such approximate methods has prompted a
considerable amount of work in the past few years on lifting-surface
theory and design methods for marine propellers. Work in the United
States has been done by Pien (Ref. 6) and Kerwin (Ref. 7), in the Nether-
lands by Sparenberg (Ref. 8) and by van Manen and Bakker (Ref. 9), in
England by Cox (Ref. 10), and in Japan by Nishiyama and Nakajima
(Ref. 11). In all these studies, however, no extensive calculations
were made that would permit the design of a non-optimum, wake-
adapted propeller with a specified blade, sjiape and circulation distri-
bution. In fact, the number of parameters that would have to be varied
(wake fraction, blade shape, circulation distribution, number of blades,
and advance ratio) and the long computing times needed for such calcu-
tions make such an investigation impractical. Hence, to design

me'. .[ I Ir i il II lll i~ l . . m U I I n n nl n Il iI I
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propellers treating them as lifting surfaces, the facilities must be at
hand-to carry out the design calculations. To this end, the work de-

Propellers for torpedoes are of primary interest at the Naval
Ordnance Test Station. Since these propellers operate in a wake, and
since good cavitation resistance dictates circulation distributions that
are not optimum, a lifting-surface design method that is applicable to
non-optimum, wake-adapted propellers has been developed. This de-
velopment goes one step beyond any of the works referenced above in
that the effect of the blade thickness is accounted for.

REPRESENTATION OF PROPELLER SYSTEM
BY SINGULARITY DISTRIBUTIONS

Each propeller blade is represented by a continuous sheet of vor-
ticity creating the bound circulation and by a continuous sheet of
sources and sinks representing the blade thickness. Since elements
of vorticity cannot end in space, spanwise variations in the bound cir-
culation give rise to elements of free or shed-vorticity in the fluid that
are left in helical paths along and behind the propeller. The shed vor-
ticity for each blade is represented by a continuous helical sheet of
vorticity starting at the leading edge of the blade and extending back to
infinity. In this development, the hub boundary condition has been ig-
nored and there are therefore no singularities representing the hub.

SPATIAL LOCATION OF SINGULARITIES
REPRESENTING PROPELLER SYSTEM

Before the calculation of the v.lacities induced by the propeller can
begin, the singularities representir:n; the propeller system must be
properly located in space. Lerbs' induction factor method (Ref. 2) for
the lifting-line solution of the moderat-! , loaded, non-optimum, wake-
adapted propeller offers the best approximation to the spanwise pitch
distribution of the helical sheets upon which the singularities represent-
ing the propeller should be located. In iach, for the free-running, un-
skewed, optimum or lightly loaded non-optiraunm propeller with negli-
gible blade thickness, symmetrical blade shape, and symmetrical
chordwise loading, the spanwise pitch distribution given by Lerbs'
lifting-line solution is identical to the spanwise pitch distribution of the
blade chordlines given by the lifting-surface solution. For other condi-
tions, the pitch of the blade chordlines will usually differ only slightly
from the pitch of the helical sheets given by Lerbs' lifting-line solution.

Since the object of the liftirg-surface solution is to detormine the
camber lines, it is not possible to distribute the vorticity representing
the bound circulation on the camber lines. Instead, the vorticity is
distributedon the helical sheets from Lerbs' solution. This appeoxi-
mation is similar to the one made in two-dimensional slender-iirAoi

2
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theory in which the circulation is distributed along the chordline when
the camber lines are computed. Since_.oon.y n*o o£carber V

are needed in marine propellers to generate the desired lift, this ap-
proximation can lead to no serious error in computing the camber lines.
The sources and sinks representing the blade are also distributed on
the helical sheets when the effects of blade thickness are computed.

Since the free or shed vorticity in the fluid is left behind in helical
paths whose pitch is determined by the relative flow of the propeller
and fluid, the elements of free vorticity fall naturally on helical sheets
that are very close to or identical to those given by Lerbs' lifting-line
solution. Hence, when the effect of the free vorticity is computed, it
is distributed on the helical sheets from Lerbs' solution.

COORDINATE SYSTEMS USED IN ANALYSIS

Figure I shows the coordinates used to describe the helical system
upon which the singularities are distributed. The angles, 4Pm , which
are given by

m-I
m=- Zi (m = 1, 2, ... , g)

g

where g is the number of blades, describe the lines where the propeller
blades intersect the plane X' = 0. These lines are referred to as the
stacking lines and are chosen coincident with the lifting lines of Lerbs'
solution. For unskewed propellers they will also be chosen coincident
with the line passing through the centers of lift of the blade sections.

Z'

r

X1

FIG. 1.

3
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One line element at a constant radius of the helical sheet streaming
back from one of the propeller stacking-line locations is shown. This
element makes the pitch angle P with respect to the plane X' = 0. The
coordinates of a point on the helical sheets in the rectangular X1, Y', Z'
coordinate system can then be written

X1 = ar tanP

Y' = -r sin(+m + a)

Z' = r cos( m + a) (I)

Another coordinate system needed in the analysis, the rectangular
' Y', Z' system, is shown in Fig. 2. In this system the Z' axis inter-

sects the X' axis perpendicularly, the Re axis is tangent at point p to a
constant radius line element of the helical sheet streaming back from

Z,

Point p

ap"

IX 
X

FIG. 2.

the stacking-line location i 1 0, and the Y' axis is normal to this line
element at point p. A vector having components AX, Ay, AZ in the
X', Y', Z' coardinate system will have components in the X', Y', Z'
coordinate system given by

AR = AX sin Pp - Ay cOSap cos Pp - AZ sinap cos p

Ay = AX coSap + Ay cosap sinPp + AZ sina p sin p

AZ = -Ay sinap + AZ cosap (2)

4
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APPROACH TAKEN IN MATHEMATICS OF SOLUTION

When the vclocities induced ty the singularities representifig the
propeller system are computed, double integrals must be solved. The
integrands are such that integration cannot be performed analytically
with respect to either of the variables. In order to bypass the diffi-
culty of performing numerical double integration, the region to be in-
tegrated is divided into strips sufficiently narrow that certain approxi-
mations hold accurately across them. These approximations, together
with some restrictions put on the form of the circulation distribution,
allow integration to be performed across the strips analytically. Thus,
instead of a numerical double integration there is an analytical integra-
tion across the strip, a numerical integration along the strip, and a
summation over the strips. This process is applied everywhere except
in a small region around the point where the velocity is desired, since
a singularity occurs in the integrand at that point, making numerical
integration through the point impossible. Integration is carried out
analytically over this small singularity region to obtain the Cauchy
principal value. To make an analytical integration possible over this
region, several approximations were necessary which in essence
amount to (1) assuming a linear variation of most of the variables ove':
the region, plus (2) discarding third and higher-order terms in the
small nondimensional coordinates describing the distance of a point
from the singularity point. The check solutions zun to date showed
that the region may be chosen sufficiently small that these approxima-
tions yield a good value of the contribution of the region to the velocity,
without being so small that the numerical integration in the area im-
mediately surrounding the region cannot be carried out accurately.

An important feature of this approach is that the point where the
velocity is desired, i.e., the singularity point, is always chosen at
the center of the strips and at the centroid of the small region sur-
rounding the singularity. Also, all approximations are expanded about
the center of the strips or the centroid of the singularity region. By
doing this, the accuracy of the method is greatly enhanced and comput-
ing times are reduced since the n.ai-iber of points needed to obtain an
accurate numerical integration is smaller.

Two restrictions, mentioned above, were placed on the circulation
distribution to facilitate integration across the strips: (1) the chord-
wise distribution of circulatior. must be made up of straight line seg-
ments, and (2) the spanwise distribution of circulation must lend itself
to an accurate piecewise approximation by parabolic sections. Since
fairly optimum chordwise distributions of circulation from the stand-
point of cavitation resistance can be made up of straight line segments,
and since most practical spanwise circulation distributions do not have
extremely large third derivatives, these restrictions offer no serious
restriction on the generality of the method.

5
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DESIRED COMPONENT OF INDUCED VELOCITY

because the component of induced velocity parallel to the blade-
section chordline will normally be very small compared to the relative
velocity of the blade section and the still fluid, it may be neglected in
the boundary condition when the camber lines are being determined.
Only the component of induced velocity normal to the blade-section
chordline is needed to determine the camber-line boundary condition.
This approximation is identical to that used in slender-airfoil theory.
Assuming that all induced velocities are to be computed on the blade
t'l = 0, the normal component of induced velocity, denoted by WZ, will
be in the Y' direction shown in Fig. 2. There are three contributions to
Wy: the one resulting from the bound circulation (WY)B, the one re-
sulting from the free vorticity, (Wj)F, and the one resulting from the
blade thickness (WY)T. Hence,

WV = (W)B + (W)F + (WV)T (3)

CALCULATION OF NORMAL COMPONENT

OF INDUCED VELOCITY

VELOCITY DUE TO BOUND CIRCULATION (W:)B

The position of points on a blade section are shown in Fig. 3a, where
C is the chord, d is the distance from the leading edge, and L is the

Cd
d y y= -

L--Stacking line

FIG. 3a.

distance from the stacking line to the leading edge. A nondimensional
chordwise coordinate is defined as

d
y = - (4)

C

The location of each vortex line element of the bound circulation sheet
is given by the condition y = Constant, as illustrated in Fig. 3b for an
unskewed propeller and in Fig. 3c for a skewed propeller. This choice
of the location of an element of the bound circulation sheet is the most
convenient one, since elements of free or shed vorticity arise only
from a change in the spanwise distribution of circulation. For the
other methods of locating the elements of the bound ci .culation sheet,

6
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(Blade shown flat here and in follow-
ing sketches to simplify drawing)

Stacking line Stacking line

Vortex line Vortex line
element of o element of
bound cir- bound cir-
culatio/n diculation
sheet sheet

y = Constant - y Constant

Unskewed Propeller Skewed Propeller

FIG. 3b. FIG. 3c.

such as that shown in Fig. 3d, elements of shed vorticity arise not only
from a change in the spanwise distribution of circulation but also as a
result of blade taper. The added complication of having to consider
both these effects in the calculations involving the free vorticity make
such a method impractical.

Vortex line
elements of
bound cir-/fll

sheet

Impractical Representation
of Bound Circulation

FIG. 3d.

Referring to Fig. I and measuring the distances d and L along the
constant radius helical line with the stacking line in the plane X' 0,
the following relation is obtained between a and y and r.

C cos P L cosp
ay -

r r

7
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This relationship maps the propeller blades onto the helical sheets.
Sub.sttinrrg-this-relationship into Eq. I yields the coordinates in the
X1, Y', Z' system of points on the blades.

X' = yC sin- L sinp

C cosp L cos PY' = -r sin M + Y -
r r

Z I = r cos +  (5)
r r

Letting di be an infinitesimal length of a vortex line element making up
the bound circulation sheet, as illustrated in Fig. 3b and 3c, the corn-
ponents of dl in the X', Y', Z' system are obtained with Eq. 5 as follows.

dix dX'

dr dr I y=Constant

dfX d(C sinP) d(L sin[3)

dr dr dr

dly dY'

r d r Iy=Constant

dly ( C cos Lcos) P\Jd(C cos) C cos

dr m r - r t dr r 1

d(L cos) L csC cos P L cos

dZ d dr rm r r )

dtZ dZ '

dr dr Jy=Constant

d1Z ( C cosP L cos P fd(G'cos P) C cos P
-- sin %bn + yy[

dr r r dr r

d(Lcosp) LcosII " Ccosp Lcos

-I dr r ii ~ y r - r~~

-8 8 -I

II___II___II__I_____I __I_______I

__ __ _ _ -___ _= = __ _ f= . . . . . . . . . . . . . - ' . . . . . . . . . . . . " " ' = - J " T ' "
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Letting the subscript p denote the point p where the normal compo-
nent of velocity is desired, and remembeting thaLaUelaa-ilt- a- to ....
be computed on the blade il = 0, the coordinates-irrtfre X', Y", V syi-
tem of the point p are, from Eq. 5,

X, = Yp(C sin P)r=r - (L sin P)r=rp

YI = -rp sinap

Z, = r cosa (6)
p p p

where

(CCosP) .L cosp)

Sr=rp

The X', Y', Z' components of the distance, S, from an element of
vortirity on one of the blades to the point p are obtained from Eq. 5
and 6.

Sx = X - yC sin P + L sin P
y( C Cos Lcos)

Sy = Y + r sin pm + Y-
r rC cos0 Los B)

SZ = Z - r co Lcss+ Y- - r
r r

Nondimensionalizing with the propeller radius, R, and diameter, D,
and introducing the 'nondimensional coordinates,

r X ' Y' Z '
x -, x = -, Y =-, Z=- (7)

R R R R

the components of di and S may be written

dIX
- = Yf 5 - f6

Rdx

dry
- cs('m + Yf3 - f4 )[Y(f 7 - f 3 ) - (f 8 " f4)] " sin (4,m + Y f4 )

Rdx

dIZ
- = -sin ('m + Yf3 " f4)[Y(f 7 " f3 ) - (f8  f4 )] + cos('Pm + Yf3 - f4)
Rdx

9
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SX p- +t

Sy
- p+ x sin (4 m + y£3 W

Sz

R = cos (!m + y£3 -£)(8)

where

xp =Ypf ip - I2p

yp=-x psinap

Z pCoa p

ap =Ypl3p -~ (9)

and where

fl = j 2- sing, 
-p=(fIXx

L
f= 2- sin p, fzp = (?Xx

D

Z(C/D) cos p

£ 3 = £3p = (3xx

2(L/D) cos p

£4 =~ = (___ _____

d[Z(C/D) sin ~
f.5 = dx f~~5p= f) :x

d[Z.(L/D) sin P]
f6-lp=(6xx

dx .

f7=d(Z(C/D) cos P ~ ](7xx
£7 = dx 7 =()

d[2(L/D) cos PI

£8 -= (f8)x~xp (10)

'C
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"Breaking the blade into spanwise strips bounded by lines y = Constant,
as illustrated in Fig. 4, there may be written for each strip

Y F=n + Y. .,

The subscript n takes on the values 1, Z, 3 ... , s, where s is the
number of strips. Substituting Eq. 11 into Eq. 8, using the trigonometric

Lines along y Constant

-1 n

g2nA I
Y3-Y-- -+

YA

FIG. 4.

identities for the sin and cos of the sum of two angles, and re-
strictiDg the maximum half-width of the strips, (y&)ma (An/Z)max
so that

COB (y,&f3)max _rz 1, s in (YAf 3) ma x _ (y&f3) max (Z

the expressions for the components of di and S in the X', Y', Z' co-
ordinate system become

dUx
- = Ynf5 - f6 + f5YA
Rdx

- = [f8 - f4 - Yn(f7 - f3)]cOs(m+ynf3 - 4) - siln(qm+ynf3 - f4 )
Rdx

"{[f 8 - f4 - Yn(f7 - 3)]ff3 s +y3 f4) + f7 cos(m +Ynf3 - f4)ly,

+ f3(f7 - f3) sin(qJm + Ynf3 - WYE?

d Z
- = [f8 -f 4 - Yn(f7" f3)] sn(S f
Rdx m + Yn 3 + COs(q'm + Ynf3 - £

+ {[8 - f4 - Yn(f7 - f3)]f3 cOs( 4m + Ynf3 W £4) - f7 sin( m + Ynf3 - 4)&YA

- f3(f7 - £3) Cos(t4Jm + Ynf 3 - f4)yA

f4)y
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Sx

R

Sy
- = Yp + x sin(4m + Ynf3 + x 3 C0n( Jm + Ynf3 -n f4)Y
R

SZ-S = Zp - x cos(94J + Ynf3 - £4) + xf 3 sin(4Jm + Ynf3 - f4)yA (13)

R

The Biot-Savart law is used to compute the induced velocity due to
the vorticity representing the bound circulation. This law is stated

-. 1 X S
W = i f - (14)

where di is an infinitesimal length of an element of vorticity, S is the
distance from the element of vorticity to the point whe'e the velocity,
W, is desired, and F is the strength of the vortex elem-.nt. Since only
the normal component of W, .*. e., Wy, is desired, there is obtained
from Eq. 14

1 f S~dtZ - SZdir
wY - r (15)4 i S3

The strength, F, of the vortex element as a function of the spanwise
and chordwise distribution of bound circulation is determined as follows.
Specify a spanwise distribution of bound circulation, r, extending from
the hub, x xh , to the tip, x 1, as illustrated in Fig. 5. Assuming

rmax = GmaxiDvs

[I

xh 1.0
x

FIG. 5.

12
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that the shape of the chordwise loading is independent of 3panwise posi-
tion, It is necessary to specify it at only one posi-ion. Thus, specify a
chordwise distribution of bound circulation at the spanwise position
r ra x , as shown in Fig. 6.

Area = max - GmaxfrDvs

II

. 1 0 1.0

y

FIG. 6.

The strength, f, may then be written

r drma.
1'- dy
rmax  dy

Nondimensionalizing the bound circulation using the propeller diameter,
D, and the forward velocity of the propeller relative to the undisturbed
fluid, v.,

r
G -

irDv s

the expression for F becomes

1 G dGma x
-- -dy (16)

iwDv s  Gmax dy

Restricting the chordwise distribution of bound circulation to one that
can be made up of straight line segments, as discussed previously,
Eq. 16 may be written for each spanwise strip

[( + dZ yj dy6 (17)

irDv s  Gmax[ dy /Y=Yn Y' "y 2  vYny

Equation 2 allows the -components of di and S in the X', Y', Z' system
to be determined from their components in the X', Y', Z' system,

13
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given by Eq. 13. Substituting these ~' ' 'components into Eq. 15 and
using Eq. 17, the expression for the normal component of induced velocity
due to the bound circulation 'becomes

MY~)B 1. f I G t&/2 (18)

vs 2 m lflxh Gmax i &Yn/Z

AoHn+( A0Kn+A ln) y+( A iKn+A2 Hn)y,&+( AZKn+A 3Hn) y,+A 3 Kny&
dy~d

(aZby +c 3 / 2 &d

where(a+b&+c,

(n=IdGmax
n \dy Y=Yn

-= (d2Gmax

dyZ Y=Yn

a = 2px sin(41m+ynf3-f4) -2Zx cos(4em+Ynf3-f4)+(Xp-Ynf 1+f2) 2 +Y ?+Z 2+X 2

b =2yYJX3 C05(Im+ynf3-f4)+ZZpVI3 sin( M+Ynf3-W-)2f 1(Xp-Ynf i+fz)

2 2 2
c = x 3f

AO0 (f8-f4-yn(f7-f3) l(Xp-ynf 1+f2 ) sifl(Im+ynf3f4-Qp )+Y p(ynf5 -f 6) sina

+[Xp-ynf 1+fZ+X(Ynf5-f6)1cOs(4Jm+Ynf3f4-aP ) Zp(ynf5-f6)cOsacp~sin pp,

dIyp[f8f4-Yn f7-f3)+Zplsin(PFm+Ynf3-f4) tZp(f 8 -f4-yn(f7 -f3)]bYpI

cos~tpm+ynf3-f4)+x[f8-f4-yn(f7-f3)1 ]Cos Pp

Al -[{f 7 (Xp-ynfi+f2)+f llf 8 f4-yn(f7'f3)1+xf3(Yrnf5-f6)1 sin(14m+ynf3-f4-ap)

-{f8f4-Yn(f7-f3) 1f3(Xp- Ynf +f2 ) -fl +xf5}cOs(I m+Ynf3f4-1p)

-Y PfS sin ap+ z pf5 Cos a PI sin P

- I{ypf 8-f4yn(f 7f3)Vf3+Zpf7cs( m+Ynf3-f4)

+{Zpf8f4-yn(f7-f3)1f3- Ypf7}sin(Lim+Ynf 3 -f4 ) -x(f 7 -f3 )I Cos Pp

14
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AZ -[{[fs-f4-Yn(f7-f3)lflf3+(f7-f3)f3(Xp-Ynfl+f2))}coslqm+Ynf3-f4-a~p)

-(flf7 - xf3f5 )sin(m + Ynf3 - £4 -ap)] sin Pp

+f3(f7f3)(YpcoS(4m+Ynf3"f4)+Zpsin(4Jm+Ynf3-4)]

"x[f 8 -f 4 -yn(f 7 -f 3 )]f2)cos pP

A3 = f lf3(f7"f3)cs(m+Ynf3f4ap)sin p+xf(f 7 - f3)cos Pp

The integration with respect to y& in Eq. 18 may be carried out analytically.
The integration with respect to x must be carried out numerically. Perform-
ing the integration with respect to y,& and since the numerical integration
with respect to x cannot be carried through the singularity, Eq. 18 becomes

MY) Bp G Qdx + -- Qdx + W (19)

vs  Z m I n x\ ax Gm Jxp+ Gmax Vs

where
c = 0 for m I or Yn '4 Yp

Ax
- for m 1 and Yn = Yp

*For I4ac - b21 > 0.00001

* AK3 Ayn /Z

S ZC [(a + by,& + cyilZ Aynl

A2Kn + A3 Hn - Kn)
, 4c YA 1 yn 2
c [(a + byA + cY,& i A.,yn /2

AlKn + A( Hn -Kn - -A 3 -
Zn ZC~ 8C2  Zc /

c(4ac - b2)

(Zb? - 4 ac)yA + Zab 4yn/?

(a + byb + cyZ J yn/)

*See footnote on next page.

15
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( 3b. r 3b. (15b2 3aj

AIKn+A2 Hn -Kn ) -.A3 Hn--.Kn - c2c 2c 8c 2- 2c

+c3/2

y b Yn/Z

ZA4rc II Yn/Z
+IH Za (AH Za - lKabU

SAoKn +A~n-AKn-- -A Hn- - n --
c C?

4ac - bZ

byA + Za 1 &Yn/2 + ZAOHn [ 2cy& +b AYn/

(a+byA+cy~.)n/ Z 4a-b 2 (a+by+cy~il/Z-n

*For I4ac - bZ[ I 0.00001

A 3 K n4T + b yA
bc2  [ ' + - ] ..Ayn/Z

AZKn + A3 Hn Kn _8a)

+ cz b[a-+"b \lAyn/Z-
4a )AYn/2

z4~a / Zfa4 3%/fa 34a 12a3/2
AIX,,-+ A 2 IHn K n JA 3 Mn--Kn

b b cI c bc

+c

[in %"a-+ b )Ayn/2

*Under certain circumstances when x=xp, 4ac - bZ = 0 (exactly or with-
in the accuracy of the computer). The solution takes a different form at
this point. Due to machine accuracy, the test is made on a small finite
quantity 'rather than on zero.
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4a ) 3(4 a3. , a 8aAo °,Al Hn-Kn A2 Hn--Kn- +A3 Hn--Knc
Ob b Cn Z cn3\ n bc

C

I '/A yn/2

b
-Ayn/Z

~~H -- Kn -A H -Kn-J+A 2 Hn - Kn*oa3a G / a3/2 a3/ a3/____

A iH. - Kn I
2cz bcZ/ I " b+ )Z]

+b

and where (AWY)B is the contribution to (WY)B from the small region
surrounding the singularity. The determination of (AWY)B follows.

Figure 7 shows the small region surrounding the singularity lying
on the blade 'l = 0 and having its center at the point yn = y The
location of points within this region are given by the nondi rensional
coordinates y& .nd xA.

Singularity region

I/

=Yn=Yp ,

XpPYnYnp 

fl

Singularity point, p

FIG. 7.

17
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Since these coordinates are nondimeniionalized with the chord and pro-peller radius respectively, they are very small compared to one. The
nondimensional coordinates in the X', Y', Z' system of points on the
blade '4q = 0 are, from Eq. 5, 7, and 10,

X = Yfl - f2

Y = -x sin(yf 3 - f4)

Z = x cos(yf 3 - f4) (20)

In the region surrounding the singularity,

x = xp + xA
Assuming a linear variation of the functions of x over the region, the
expressions for f 1- 4 are

fI = flp + f5pX&

f= = fZp + f6p xA

XA
f3 = f3p + (f7p - f3p) x

xp

f4 = f4p + (f8p " f4p) w

Xp

where the f I-8 are defined by Eq. 10. Substituting these expressionsinto Eq. 20 and utilizing the trigonometric identities for the sin and cos
of the sum.,of angles, there is obtained

X = yflp - f2p + (Yf5p - f6p)XA

Y = -(xp + xA)sin(Yf 3 p- f4 p)cOsf[y(f 7 p - f3p) - (f8p - f4p)]] x

-X (x + xA)cos(Yf 3 p - f4 )sinfly(fp- 3)-(p-
xp

Z (x p + xcos(yf3 p - f4 pcos [y(f 7 p - f3p) - (f8p - f4p)] j
- (X p + x,)sin(Yf3 p f4)sin 1Y(f 7 p f3p) -(f8p -f4)] (21

18
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Restricting (xa/xp)mn. = Ax/2x1 , to be very small compared to one, so
that,.

*in{(Y(f 7p- f3 p) -(f 8 p - 4p)]x axL = lfY(f~p - 3p) -(f 8 p -f p)] x Inax

ix

Equation 21 becomes Pma

X =yf lp - 2p + (Yf5p - 6p)xA

Y = -xp sin(Yf 3 p - f4p)

- sin(yf3 p - f4p) + cos(yf3 p- f4 p)[Y(f 7 p f3p) - (f8p -f 4p)]Ix,&

Z =x pcosyp - fp

+ (cosyf 3 - f4p) -sin(yf 3 - f4 p)(y(f 7 - f3 p) - (f8p-f 4 p)1}x4  (23)

Introducing again the expression for y within a strip,

y = Yn + X& = yp, + Y&.

using the trigonometric identities for th&- sin and cos of the sum of
angles, and remembering the restriction that has been made concerning
(y,&f3)max (see Eq. 12), Eq. 23 becomes

X =ypf lp - fp+ f ly,& + f5py,&xA + (Ypf 5 p - f 6p)xA

Y= X~ psinla p - x pf3 p C cs apYA

-f 3p{csx1 - sin yp + YA&)(f7p - 13p) -(f~~p f4p)]}YAXA

( siflap + cosap(Yp + Y,&)(f 7 p f 3p) -(f8p - f4p)]}XA&

Zx =~ cI -P x pf 3 p sinay

~f~r Isina + Cosa 1~(y + Y,&)(f 7 p - £3p) -(f 8 p f4p)]}Y,,xA

+ ICos a - sirp 'Yp + YA)(f 7p -f 3 p) -(f8p -f4p)]lXA (24)

*-These approximations imply certain restrictions on f7 and f8 which
are discussed later.

19
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Using Eq. 24 and 9, the- expressions for the components of di and S in theX1, Yin, Z I coordinate system are easily btai=&d

dX dX' dX

dx,& dxA~ ly&Constant dxA ly=Constant

A

dly dYl dY
R

dxA dx& ly&=Constant dXA lyA=Constant

-=si n a p~ - cosap.l(y1 , + YA)(f7p - f3p) - (f8 p - f4p)]
RdxA&

f3p( cosac p - sinip(Yp + Y&)(f7p - f3p) -(f 8 p f4p)])yA&

dAZ dZ'~yNC dZ
R-

dxA cbxAyA -natant d lAyA&Constant

-= '205 c - sinacp[(yp + YA)(f7p - f3 ) - (f 8 p - f4p)]

-f3plsina p + Cos apE(Yp + Y&)(f7p - f3p) -(f 8 p ~)]Y

SX=Xl- X' = R(X p - X)

- = _f lpy, - fSpy,&xA - (Ypf 5 p - f6p)x&
R

Sy = YI- Y' R(Y p - Y)

Sy = x x f 3 p Cos QpX + f3 p(cos a p - sin ai P( Y + YA) (f7p f3 ) - (f 8p - f 4p) IIy ,x ,

+ {sina p + coscip[(yp + YA)(f7p -f3p) - (f8 p - f4p)])x,&

Sz= ZIP, - Z' = R(Z p - Z)

= xp~sinacpyA,+f 3 ' Isinai + Cosa cI ~(~-yp1Y

-{cos6cp -sin cip((yp + YA)(f7p -f3p) -(f8p -f4p)]}x& (25)

20
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Making a linear approximation in Eq. 17 to the bound circulation(G
d -

- + --- xAGmax x=Xp c dx X=xp

using Eq. Z to determine the components of dt and S in the X', Y', Z'
coordinate system, discarding third and higher-order terms in the
products of the small quantities y& and x& in the expressions

sVIZ - SZCUd

s2= s2 +2 s2

and substituting into Eq. 15 yields the expressions for (,Wi)B/vs .

('&WY)B -1 Ayn/Z (Hn + K~y)Cy + 2 Ax/2

vs  2 JAYn/2 C-Y ) LAx/Z

E + Fx&

(ajly + blyx, + clx )3/z dYA (26)

where

In dGmaxH= )
\ dy Y=Yn=Yp

Kn = Id 2 Gmax
dy 2  y=Yn=Yp

Cj = -flp sin ip - xpf3p cos Pp

C2 = f3p(f1 p sin Pp + xpf3p cos Pp)[yp(f7p - f3p) (f 8 p - f4p)]

E ; (G

d-p

Gmax
F-

dx )x=xp

21
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a, fz + f2
I = pf1 f+ -pf3p

bl - Zlp(Ypfp - f6p) + xpiZfp[yp(f 7 p - f3p - ( 8p - f4p)]

- (ypf5p - f6p)Z + 1 + [yp(f7p - f3)- (f 8 p - f4p)]Z

The integrations in Eq. 26 are straightforward but because they lead to
lengthy expressions, they are not presentedhere. It suffices that
Eq. 26 can be integrated analytically through the singularity to obtain
the Cauchy principal value.

VELOCITY DUE TO FREE VORTICITY (Wy)F
The coordinates of a point on the helical sheets in the rectangular

X1, Y', Z' coordinate system were given as Eq. 1 and are repeated
here.

Xf = ar tanP

Y' = -r sin(m + a)

Z = r cos(4inm + a) (1)

Assuming that the propeller is moderately loaded, the contraction of
the wake may be neglected. Hence, each vortex element of the free
vorticity sheets may be considered to lie on the helical sheet at a con-
stant radius, as indicated in Fig. 8. Letting dt be an infinitesimal

Vortex line element
of free vorticity sheet

" _.j__ elf T E

r = Constant

FIG. 8.

length of a vortex line element making up the free vorticity sheets, the
components of dl in the X', Y', Z' system are obtained from Eq. 1 as
follows.

d xI- dX'

da dci r=Constant

22
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dlx-= r tan"

da

dly dY'

da da Jr=Constant
dly
- = -r cos( m + a)

da

dlZ dZ'

da da r=Constant

d1Z
- = -r sin(pm +C)
da

The coordinates in the X', Y', Z' system of the point p on the blade
I = 0 where the normal component of velocity is desired is designated

using the subscript p, as in the previous section.

X = a prp tanPp

Y = -r sinap

ZI = rp cosap (27)

The expression relating ap to the position on the blade, developed in the
preceding section, is

ap = Ypf3p - f4p

The X', Y', Z' components of the distance, S, from an element of
vorticity on one of the blades to the point p are obtained from Eq. I
and 27.

Sx = X- i r tan

Sy = Yb + r sin(q'm + a)

Sz = z - r cos(4 m + a )

Introducing the nondimensional coordinates of Eq. 7, and letting
x tan 3 = X, the components of ci and S become

dIX
- =

Rda

23
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dSy" " ...... ,. = x Cos + a .
a

d1Z

-= _x sin(qjm + a)

R

SX
- = Xp -aX
R

Sy
-= Yp+ x sin(t m + a)

R

SZ
-= Zp - x cos( m + a) (28)
R

where
Xp = ap(X)x=xp

Yp = -Xp sinap

Zp= x p cosa p

Lifting-line solutions for free-running, unskewed, optimum or lightlyloaded non-optimum propellers yield X =Constant, i.e., independent of
the spanwise station x. This is not true for moderately loaded, non-
optimum, wake-adapted propellers, which are of interest here. To beable to handle this variation in X, the blades are broken up into chord-
wise strips bounded by lines x=Constant, as illustrated in Fig. 9.

Lines along x =Constant

l n -n- 'I4i

LULL }Axnt

x1 x2 x3

FIG. 9.
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Due to the great simplification in the mathematical expressions which
result, the location of points along a strip are-
angle a corresponding to the center of the strip. Thfs causes the strips
not to fit the blade shape exactly, as illustrated in Fig. 9 by the fact that
the ends of the strips do not coincide with the leading edge. However,
by using a fairly large number of strips, the blade shape can be repre-
sented quite accurately. For each strip there may be written

x = xn + x& (29)

The subscript n takes on values of 1, 2, 3, ... , i, where i is the num-
ber of strips. With the blade broken up into a fairly large number of
strips, the variation in X can be represented with sufficient accuracy
by a linear approximation across each strip.

X = (l)Xxn + ) x (30)
X=n

Substituting Eq. 29 and 30 in Eq. Z8, the expressions for the components
of df and S become

dIX dX x- = l X)=xn +
Rda d:x=xn

dly
- = -x n cos(tpm + a) - cos(tm + a)x
Rda

d1Z -=x n sin(qm + a) - sin( m + a)x A

Rda

-- = Xp - a(X)X=Xn - CLa X x A

R XXXf=Xn

Sy
R= Yp + x n sin(q4m + a) + sin(vIm + a)xAR

SZ
- = Zp - x n cos(q4m + a) - cos(4,m + a)xA (31)

R

The Biot-Savart law, Eq. 14, is used to compute the induced ve-
locities from the free vorticity. Since only the normal component of
velocity is desired, Eq. 15 gives the desired relationship. The strength,
F, of the vortex element as a function of the spanwise and chordwise

25
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distribution of free vorticity is determined as follows. The value of
a - t t-ra i g e oE-iite-biate, ? 'Yg8) ir&,term-s-of the bound

circulation r is given by,

dr
rTE -- dx

dx

A factor k is defined as the ratio of the strength 1 at any chordwise
station to the strength at the trailing edge, rTE.

k
rTE

Introducing once again the nondimensional bound circulation G = r/nDvs
the expression for F is

r dG
-= -k-dx (3Z)
irDv s  dx

Considering an infinitesimal area on the blade bounded by lines
y = Constant and x = Constant and utilizing the fact that the sum of the
bound circulation and free vorticity entering the area must equal the
sum of the bound circulation and free vorticity leaving the area, the
expression, illustrated in Fig. 10, for k may be determined.

0

0 Iy 1.0

1. --

I ~ d I\ ax

L 

, .max 

dy

0 1.0
y

FIG. 10.
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For 04 y l k- I mady Fory> I k= I
Gmax JO dy

This simple relationship betweenk and y, which is independent of the
spanwise station, results from having chosen the elements of bound
circulation along lines y = Constant. To obtain k as a function of a, the
relation between a and y developed in the previous section is used.

a = Y(f3)X=xn - (f4)X=Xn

Restricting the spanwise distribution of bound circulation to one that
lends itself to an accurate piecewise approximation by parabolic sec-
tions, as discussed previously, Eq. 32 may be written, for each chord-
wise strip,

= - k + xA dxA (33)nrDvs dX=Xn \ dx 2 X=xn

Equation 2 allows the components of di and S in the X', Y', Z' coordi-
nate system to be determined from their components in the X', Y', Z'
system, given by Eq. 31. Substituting these X1, Y', Z' components and
Eq. 33 into Eq. 15, the expression for the normal component of induced
velocity due to the free vorticity becomes

(W7)F 1 g a 'u Axn/2

Vs  Z r= n= l LE J-AXn/2

2 3AOIn+(AOJn+AlIn)x, +(AlJn+A2In)xA +AJnx,&
3/ dxAdcL (34)(a + bxa + cA) /

where
JdG~

1n = ( dx xxn

Jn =-
n dx 2 X=xn

a = ZYpxn sin(Pm + a) - ZZpxn coS(41m + a)

+ (Xp - aMn) 2 + Y2 + Zz + Xn2
x p n

b = ZYp sin(4im + a) - Zp cos(W'm + a) + Zxn

2aNn(Xp - aMn)
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c = I - aZNnZ

A0 = -[(Xp - aMn)xn sin(tPm + a - ap)

- Mnfxn cos(4P1 n + a - a p ) + Yp sin a p - Z p coscp ]}sin Pp

+ xn[Yp sin(4m + a) - Z p cos(Jm + a) + xn1 cos Pp

A, = -[(Xp - aMn) - aNnxn] sin(tIm + a - a p)

- (Mn + NnXn)COSPqm + a - ap) -Nn(Yp sina p - ZCp csap)}sin P

+(Yp sin(' m + a) - Z p ces(t4m + Q) + ZXn]COS Pp

A2 = NnIa sin(+4 m + a - ap) + cos(4jm + a - a p )]sin Pp + cos p

and where

M n = ()X=Xn

= 
d

Nn=I I
~dxl xLx

The integration with respect to xA in Eq. 34 may be carried out analyti-
cally. The integration with respect to a must be carried out numeri-
cally. Performing the integration with respect to xA, and since the
numerical integration with respect to a cannot be carried through the
singularity, Eq. 34 becomes

(Wi)F 1 g i (a "-  "fau ) (AW )F

( W ) Ia _ ( I 4 k o d a+ a u k Q d ai + ( & ) F (3 5 )V s "-m=1 =l aLE fp+€ CVs

where

= 0 for m/ or Xn /Xp

Aa

c - for m and xn Xp
2
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*For 14ac - bZ1- 0.0000 l

AZjn r4Acl
c lh(a +tbx+C ia +1- x +' I/2

AIn + AZ rn 3

+_ 2C4a -- n (ZbZ - 4ac)x,& + Zab 1 n/Z

+n Ai+m + - l/ + 4 + }x/

c4ac - bZ a + &+cx2 I xn

c3&)- J-Axn/

Aojn [n - iA]n- AX+/Z+_a- -- ln (a + bx& + c,) l/' + &Fc, I 1&x/

4 c 3/ I -Nc -x/

+a -V b2 [(a +l +x, + , +x,2 1/2 1/J_,nn

*For I4ac - b21 < 0.00001

AZJn f b Axn/Z
Q a +- x n 2

r a  
A-Axn/

AJ n - AZ r- "--
b b b n/

+ [ I n F Ia + - -- _

c [ Za .Axn/Z

*Under certain circumstances when a = ap, 4ac - b2 = 0. The solu-
tion takes a different form at this point. Due to machine accuracy, the
test is made on a small finite quantity rather than on zero.
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AOJn A A n- ) Xn/

c 
b

+- - xn/z

( A~ 3 a/Z ~ 3/2 a3/2
" AO In '  "' A~ -n 'J- - A Z (In'in

b Zc bc bc Zcn -i

S 1 AXn/Z

Axn/Z

and where (AWY)F is the contribution to (WV)F from the small region
surrounding the singularity. The determination of (AWY)F will follow
shortly. The value of a at the leading edge, aLE, follows from the
work in the previous section.

aLE = "(f4)x=xn

The value of the upper limit of integration, QUO is theoretically in-
finity; however, as is discussed subsequently, the integration may be
truncated at a rather small value of au. Assuming that the integration
is carried out q propeller diameters (measured axially) behind the
point p where the velocity is desired, the expression for au is

Zq + ap(X)x.xp

(X)x=xn

This follows from the first of Eq. 1.

Since the lifting-surface solution starts from the lifting-line solu-
tion, the angularity of the flow due to the lifting-line solution has
already been accounted for. Hence, only the difference between the
normal component of velocity on the lifting surface and the normal
component of velocity at the lifting line from the lifting-line solution
is desired. It is of course understood that both these velocities are
determined at the same radius. For free-running, optimum or lightly
loaded non-optimum propellers where the helical sheets form a true
helix, i.e., X = x tanP = Constant, it is necessary in determining this
difference to choose a value of q which assures only that the integrations
are carried out to a point behind the trailing edge. This is true because
for the true helix the integration from q diameters behind any point (at
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a given radius) to infinity will be the same, so that upon taking the dif-
ference this. contribution cancels out-exactly.....This fact ha.s. been taken
advantage of by several investigators in calculating lifting-surface
corrections for free-running, optimum, or lightly loaded non-optimum.
propellers. For all other propellers, such as the moderately loaded,
non-optimum, wake-adapted propellers of interest here, the helical
sheets do not form a true helix and this canceling effect does not occur.
Luckily for these cases, the difference between the lifting-surface
solution and the lifting-line solution is strongly dependent on q only for
small values of q. Thus it is necessary to carry out the integration
only a few propeller diameters behind the two points when determining
this difference. A great saving in computer time results from this
approach, since numerical integrations to great distances behind the
propeller are not needed.

The normal component of velocity at the lifting line from a lifting-
line solution where the integration is carried out q propeller diameters
behind the lifting line is needed to determine the difference discussed
above. This is determined from Eq. 35 by putting ap = 0, k = I, and
ignoring the integral from aLE to ap - c. The expression for (AWY)F
takes a different form for the lifting-line solution, as will be indicated
later.

Figure II shows the small region surrounding the singularity. This
region lies on the blade ql = 0 and has its center at the point xn = Xp.

Singularity region -a

Singularity
- _ point, p

W=Qp

t [(The angle a is indi- X=Xn=Xp
cated here as a distance
to simplify drawing) I

FIG. 11.

The location of points within this region is given by the nondimension'l
coordinate xA and the angle aA. Since x, is nondimensionalized with
respect to the propeller radius, it is very small compared to one. Also,
a,& is restricted to be very small compared to one. The nondimensional
coordinates in the X1, Y', Z' system of points on the blade 1= 0 are,
from Eq. 1 and 7
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X = ax tan =ak

Y = -x sina

Z =:- cosa (36)

In the region surrounding the singularity,

x = Xn + XA Xp + XA, a a p + aA

Substituting these expressions and Eq. 30 into Eq. 36, and making use of
the -trigonometric identities for the sin and cos of the sum of angles,

X = ap + aA) (X)X=xp + ( ±)xp xAj
Y = -(xp + x%)(sina p cosaA + cosap sina,)

Z = (Xp + xA)(cosa p cosaA - sinap sinaA) (37)

Since (aA)max = Aa/2 is restricted to be very small compared to one
(in radian measure),

Cosaa 1l, sina,& a,

Putting these approximations in Eq. 37, there is obtained( dX\ + XX = ap()X=Xp + a p - xa xAaA + ()X=Xp aA
Pdx XXp dx I=Xp

Y = -xp sinap - sinapXA  cOSapXAA - Xp cosa pa

Z = x p cosap + cosapXA - sinapXaaA - xp sin apaA  (38)

Using Eq. 38 and the expressions on page 24 for XpYpZp, the expressions
for the components of dl and S in the X', Y', Z' coordinate system are
easily obtained.

dI X  dX' dX

daA daA XA=onstant daA xa=Constant

dIX Idx \- ()XXp+ I-i
RdaA p d X=xp

32



NAVWEPS REPORT 8442

dly dY' dY

dnA daA xA=Constant daA xA=Constant

dly
-= _X p Cos a p - COS apX,

Rda,&

dIZ dZ' dZ

da= da, [YA=Constant da& xA=Constant

dI Z

- Xp sinap - sinapXA
RdaA p

SX = X, - X' = R(Xp X)

SX (dX /d,I
= _ap -i xz -- x&a, - (X)X=Xp A

R 'dx xxp dx =XXp

SY = Y, - Y' = R(Yp -Y)

Sy
R = sin a pX + COSapXAa A + Xp cosapaa

S Z = Z - Z' = R(Zp - Z)

Sz
-= -cos apxA + sinapxa, + Xp sin apaA

Making a linear approximation in Eq. 33 to k across the singularity
region,

Sdk\
k = (k)a=a p + - caa a

using Eq. 2 to determine the components of di and S in the X', ', Z'
coordinate system, discarding third and higher-order terms in the
products of the small quantities xA and aA in the expression
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S 2 S2,

and substituting into Eq. 15 yields the expression for (,&Wy)F.

('&WY)F 1 fAxn/z -2a/
.- -- f (In + in xt)(C lx,&+ C~x,&)

s Z2 x/2A/

ko + kl a,

2 b2~c +ci)3/2 da,&dx,& (39)

where

dG)

in dx xnxp

k1

Ci I Mn sinl Pp + Xp cosf3p

C2 =Nn sin P p + COS p

a, I a M N
p n

CM2 +X2
1 =M1 +

and where

Mn= (M )xnxp
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For the lifting-line solution, where the point p is at the front edge of the
he1icaLsheetaadthe rei na vaiatia-i-the. strength, of th -shzet. tlw..th..
respect to a, the lower limit of integration with respect to a, should be
zero instead of -Aa/2, and the values of ko and k I should be one and
zero, respectively. The integrations in Eq. 39 can be carried out ana-
lytically through the singularity to obtain the Cauchy principal value.
These integrations lead to lengthy expressions that are not presented
here.

VELOCITY DUE TO BLADE THICKNESS (W)T

In calculating the effect of blade thickness, the blades are broken
up into spanwise strips like those used in the, section on bound circula-
tion. Hence, many expressions take the same form and are taken
directly from that section.

The components of the distance, S, from a point on one of the blades
to the point p Where the velocity is desired are given by Eq. 13 and are
repeated here.

= Xp- Ynfi + fz" fly&"
R

Sy
= Yp + x sin(qm + ynf3 - f4 , + xf 3 cos(4,m + Ynf3 - f4)YAR

Sz
= Zp - X cos(b m + ynf3 - f.l) + xf 3 sin( m + Ynf3 - f4 )YA (13)R

Since the velocity at point p caused by, a source (representing the blade
thickness) on one of the blades is desired, the source potential may be
written

Ii ii I

4wrS 4w S + S2 +S2

where il is the source strength.

The components of the induced velocity at point p in the X', Y', Z'
directions from the sonrce are given by

04, n Sx

aSX 4Pr (Sx + Sy + sZ/

8 T1 Sy

aSy 4Tr (SX + Sy , + SZ)
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0+ n Sz
-Wz =_

as z  41r (S + S2 + q1-

Equation 2 allovs the normal component of velocity, WY, to be de-
termined from the preceding result. The normal component of velocity
at point p due to a source of infinitesimal strength on one of the blades,'
is then written

dil Sx cos Pp + Sy cosap sinfPp + SZ sinap sinp (40)
s+ + s23/Z

The infinitesimal source strength can be written as a product of a sur-
face source density on the helical sheet, p, and an infinitesimal area,
dA, of the sheet.

dc = ptdA (41)

The 3ource density can be related to the blade-section thickness distri-
bution as is done in slender-airfoil theory and illustrated in Fig. 12.

dz *
= zv- (42)

dy

Sheet of sources
Normal velocity at sheet of local density,4

d
d t Cy=- z=-
C C

n~ dz p
- Vn

V dy 2

dz

dy

FIG. 12.

*Since dz/dy goes to infinity as y - 0 for essentially all thickness
forms, the nose shape is modified slightly to retain a finite dz/dy at
y = 0.
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The relative velocity V of the blade section and the fluid is given approxi-
mately for a propeller by

V = (v + Wa)Z + (wr - Wt)Z

where v is the local axial inflow velocity to the propeller, w is the angu-
lar velocity of the propeller, and Wa and Wt are the axial and tangential
components of induced velocity from the lifting-line solution. Assuming
that the thickness distribution function, z = f(y), is the same at all span-
wise stations except for a multiplier that is a function of x only.l it is
necessary to specify it at only one station. Hence,

dz= dz 43)

dy dY Ref

where rR is the ratio of the percent thickness of the blade section at any
spanwise station to the percent thickness at the reference station. The
expression for the infinitesimal area, dA, of the helical sheets in terms
of the nondimensional coordinates y and x can be determined by th6 use
of Eq. 4, 5, 7, and 10 and relationships involving direction cosines. The.
expression is

dA = RC VI(yf 5 - f6)cos P + if8 - f4 - Y(f7 - f3 )]sinP)1- + I dydx

Since the variation in y across a strip is not large, a fairly accurate
approximate expression for dA may be obtained by setting y equal to
the value at the center of the strip, Yn'

dA = RCFndydx (44)

where

Fn =  {(ynf5 - f 6 )cos P+ f 8 - f4 - Yn(f7 - f3 )]sin P17 + I

Substituting Eq. 41, 4Z, 43, and 44 into Eq.40, the normal component of
velocity at point p due to the thickness effect of an infinitesimal area on
one of the blades becomes

This type of relation holds approximately for any of the NACA
basic thickness-form groups. For example, the z=f(Y) for the NACA
65-008 form can be obtained approximately from that for the NACA 65-
010 by multiplying by 8/10.
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dWY 1
- = - f OF F%

"Vs  if

IdzlSx SY S
-c os Pp + cos sinp+ - sin sin~p

dyRef R R Rp R

SZ + Z ~Z 3/?yx(5
R2 R2- RZ

where V C

fo = f(x) - - rR
vs D

Approximating the thickness distribution function across each strip
by a parabola,

dz dz (d 2 zA

(dy )pef z d~-Y /= \ 'Y-Yn (6

Substituting Eq. 46 into Eq. 45, and indicating the integratioirover the
blades, the expression for the normal component of induced velocity
due to blade thickness becomes

(WY)T 1 g , Yn/Z

v 3  fT A~nm= r 1 n=-1 f ~
AOSn + (AoT n + AISn)YA + ATny(

(a~y~+y~3/2~~dy~dx (47)(a + by6 + cy2)3/2

where

S = "d y

n d Y=Yn

Tn = (\ dy2 /y= 7n

A0 = (Xp - ynfI + f2)cos P p

+ [p cOSap + Zp sinap + x sin(d1m + Ynf3 f4 - ap)Slin p

Al = -f1 cos Pp + xf 3 cos(tPm + ynf3 - f4 " ap)sinp
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= ZYpx sn(Dm + Ynf 3  f 4 )ZZpx cos(P m + Ynf3 4)

(X - ynfI + fZ)Z + Y + Z.

b = ZYpXf 3 Cos(Im + Ynf3 -4)

+ ZZ pxf 3 sin(1m + Ynf3 f4) (Xp - Ynf 1+ fz)
c = x~f z + f2

3 1

The integration with respect to y. in Eq. 47 can be carried out analyti-
cally. The integration with respect to x must be carried out numeri-
cally. Carrying out the integration with respect to y& and since the
numerical integration- with respect to x cannot be carried through the
singularity, Eq.47 becomes

(WY)T - A g Xp( fE Fl ___+I__Fd + WY

Vs it nh I: xd0 + Jxp+( £0 nd v

where

t= 0 for m I or Yn /Yp

AX
c = - for m 1 and Yn " Yp

2

*For I4ac - bzI > 0.00001

2AOSn ' Zcy,& + b 1&n?
4ac - b2 (a + byA + cy2) 1/2

Z(A OTn + AISn) by& + Za AYn/2

4ac - b2  I(a + byA + cyZ ) 1/2] Yn/2

AITn [(Zb - - 4ac)y& + 2ab Yn/2
+ c(4ac b?-b) I(a + by& + cy2) 1/2 Ayn/2

AlTnl [ -b HnAYn/

+ A In I(a + byA + cy.)1/Z +'cy +
c3F I TC II-,&yn/ 2

*Under certain circumstances when x=xp, 4ac - b 2 =0 (exactly or
within the accuracy of the computer). The solution takes a different
form at this point. Due to machine accuracy, the test is made on a
small finite quantity rather than on zero.
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*For I4ac - bZl j 0.00001

Q JOS- nq Al(Sn- Tn
C bc b j

+r 
7raAAAoTn +AiSn Tn)

z -IAYn/Z

4 a- + 7 N a bA -1AY n /

+AITn in ,a + Abc I~ IJay/

and where (AWY)T is the contribution to (WY)T from the small region
surrounding the singularity. The determination of (AWY)T follows.

The small region surrounding the singularity is similar to that in
the section on bound circulation and is shown in Fig. 7. The expressions
for the X', Y', Z' components of S inside the singularity region are
given by Eq. Z5 and repeated here.

R "flpYA - f5pyxA - (Ypf 5 p - f 6 p)xA

RS--X XpfpcosCpYA + fp{cosu p - sina p[IYp +YA) (f7p-"f3p)"(f8p-"f4p) ]}x

+ Isinlp + cos p[(yp + yA)(f 7p - f3 p) - (f 8 p - f4p)]Xc

= Xpf 3 p sincpy& + f3p[sin cp+ cosa p[(yp+ y,&)(f7p - f3 p)- f8p - f4 p)]} YAXA

R

- cosa p - sinap[(yp + yA)(f 7 p - f3 p) - (f 8 p - f4p)]}xA (Z5)

Making a linear approximation of fo across the region,

f0 (f 0)xp +- &=f x  A
40p
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using the value of Fn at the center of the region,

Fn = (Fn)x=xp F

Yn -=Yp

discarding third and higher-order terms in the products of the small
quantities yA and xA in the expressions(dz

d (SX cos P+ Sy cos ap sin p 4. Sz sin ap sin Pp)
\dy/Ref

S2 = S2 + S2+

substituting into Eq.45 and indicating the integration over the region,
the expression for (*AWV)T is

( W) T 1 f 4xA12 AYn/2
- F P (A + Bx.)Vs 7T -x/2 -A yn/2

COxA + C ixAY2

(ax Z + blxAy, + cjy)3/Z dyZdxA (48)

where

Fp = VI(ypf5p - f6 p) cos Pp + [f8p - f4p - yp(f7p - f3p)] sin Pp}
Z + 1

A = (f0)x=xp

dfo

( dx IX=xp
C0 = Sn{[yp (f7p - f3p) " (f8p " f4p)]sinp - (ypf5p " f6p

) cos P}

C= Tn{[yp(f7p - f3p) -(f8p- f4 p)] sin Pp" (Ypf5p " f6p) cos P1p

+ Sn(f7p sin P - f5p cos p)

Sn =
)YYnYp

( d2  2\ dy y=yn=y p
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a, - (ypf 5p " f6p) + I + (Yp(f 7 p - f3p) - (f8p - f4p)]Z

bl =4tlp(yptip - f6pl t ZXpt3p!Yp(t7p f3p - kr p'.-"'4pHF

c I  fzp + x fzc

IP p 3p

The integration in Eq. 48 can be carried out analytically through the
singularity to determine the Cauchy principal value. Due to the lengthy
expression that results, this operation is not shown here.

DETERMINATION OF CAMBER LINES
FROM NORMAL COMPONENT OF INDUCED VELOCITY

The total normal corr.ponent of induced velocity desired for comput-

ing the camber lines is

W7 = (WY) B + (WV)F - (WY)FLL + (WV)T

where (WV)FLL is the normal component of induced velocity at the
lifting line from the lifting-line solution. This component must be sub-
tracted since the angularity of the flow due to the lifting-line solution
has already been accounted for. This point was discussed in detail in
the section on free vorticity. The nomenclature used in describing the
camber lines is given in Fig. 13.

C

rod d

e

C Ah

y
0 1.0

d

C

FIG. 13,

The camber lines are approximated by a power series of j + I terms.

a0 + aly+ a2 y z + a 3 y 3 + "" + ajyJ
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The slope of the camber line is related to the normal component of in-

ducud-velocity-oy

dh WT

dy V

Hence,

=al+ Za)y+ 3a3v2 + --- +ja y j 1

V .
J

If W7 is determined at j values of y across the blade, there result
j linear equations in the j unknowns, a i . Upon solving for the a i , the
camber offset, Ah, and the variation of the pitch angle from the lifting
line value, y, are determined from

\j

y a i~i1l

Ah (y- l)a + (y- l)a 1 + (y 2 . l)az +.. + (yJ - l)aj (49)

COMPUTER PROGRAMS

The foregoing equations for the solution of the induced velocities and
the camber lines were programmed on an IBM 7090 computer. To fa-
cilitate program checkout, four separate programs were written: (1)
solution of induced velocities due to bound circulation, (2) solution of
induced velocities due to free vorticity, (3) solution of induced velocities
due to blade thickness, and (4) solution of camber lines and angles of
attack from induced velocities. The induction factor lifting-line solution
of Lerbs (Ref. 2) was also programmed on the 7090 computer because it
serves as the starting point of the lifting-surface solution. These five
programs were thoroughly checked out against hand calculations and
special cases for which exact solutions can be obtained. Some of the
results and some typical design calculation., for a wake-adapted pro-
peller will be given in a future report on numerical results from the
lifting-surface theory.

Simpson's rule was used in these programs when numerical integra-
tions were needed. Although there are methods superior to Simpson's
rule, it appeared more advantageous to gain accuracy by using more
points in the numerical integration than to use a more complicated inte-
gration technique.

Examination of the foregoing mathematical developments shews that
first and second derivatives of various functions are needed as inputs
to the solution. Normally, these functions are known only as a table of
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discrete values and determination of meaningful third or higher deriva-
tives-is very difficult. Consequently, the approach .-- -h
ceding mathematical developments was adopted, e.g., low-order ap-
proximations (involving at most second derivatives) were used across
the strips and accuracy obtained by using many strips. The needed
first and second derivatives could then be determined through a 7090
computer program existing at'NOTS that allows a sliding polynomial
fit by least squares to the discrete input data and outputs first and
second der:,vatives.

RESTRICTION ON BLADE SHAPE

Blade shapes having rounded tips, as illustrated in Fig. 14, cannot
be handled by this method because of the behavior of certain functions
that appear in the numerical integrations.

Allowable blade tip shape

DRound tip shape
which cannot be
handled by design
method

FIG. 14.

For rounded tips,

d(Z(C/D) sin 31
f5 -- 0

dx

d[Z(L/D) sin ]

f6= ,x.o0dx
as x" I

d[2(C/D) cos 1
f 7  --- 0 O .

dx

d[Z(L/D) cos P]
f= __ _ __.x 00

dx
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Also, the approximations of Eq. 22 can be made valid only if f7 and f8
do nat-berome excessively large. Hence, this method is restricted to
blade shapes that have a finite chord at the tip, as shown in Fig. 14.
Since such a modification to the more usual rounded tip can result in
at most a very small loss in propeller efficiency, no significant loss
in the method's usefulness is caused by this blade-shape restriction.

DISCUSSION

The approach taken in the preceding work has been to obtain a satis-
factory engineering solution to a difficult problem rather than to attempt
an elegant development from a mathematical point of view. Therefore,
this method must be used with a certain amount of engineering judgment
in such things as the number and width of the strips into which the blades
are divided and the size of the singularity region. The check solutions
and design calculations that have been run to date provided sufficient
knowledge for these judgments to be made now on a rational basis. A
further discussion of this point, along with typical values, will be given
in a future report presenting numerical results from the lifting-surface
theory.

Verification of an interesting point has occurred in the calculations
that have been run. For unskewed, free-running, optimum, or lightly
loaded non-optimum (X = x tan P = Constant) propellers having symmet-
rical blade shape, symmetrical chordwise loading, and negligible thick-
ness, the pitch given by the lifting-surface solution is identical to that
from the lift.ng-line solution (y in Eq. 49 equals zero for all spanwise
stations). This point has been referred to by several investigators.
Hence, the pitch correction for such propellers arises solely from
blade thickness.

CONCLUSIONS AND FUTURE WORK

The lifting-surface design method, with the aid of a high-speed
computer, allows single-rotating, wake-adapted propellers of nearly
arbitrary shape and loading to be designed without the need for the
many assumptions and approximations involved in the methods that can
be carried out with a hand calculator. Since the mathematical model
accounts for nearly all parts of the physical propeller system in a
fairly exact manner, there is reason to believe that propellers designed
by this lifting-surface method will perform to specification. A definite
conclusion cannot be made, of course, until propellers are designed and
tested.

In torpedo design, counterrotating propellers are usually employed
to obtain a torque balance. In order to apply the lifting-surface method,
a lifting-line solution is under development for counterrotating propellers
that will serve as the starting point for application of the lifting-surface
solution to each propeller. The effect of each propeller on itself is
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determined by a slightly modified version of Lerbs' induction-factor
method that allows the effect of the interference velocities (those in-
duced at one propeller by the other) to be accounted for in the reiai ..vc.
flow at the lifting line and also allows application to propellers having
a finite circulation at the hub.

The mean axial-induced velocities at one propeller induced by the
other are obtained by replacing the finitely bladed propeller with an
infinitely bladed propeller having the same radial thrust distribution.
The mean tangential-induced velocities at the rear propeller caused by
the front propeller are determined from Stokes' theorem. Continuity
effects due to hub taper are accounted for in an approximate manner.

The one possibly important factor in propeller design, which to
date has not been thoroughly investigated, is the effect of the hub
boundary condition. Work has been done on optimum propellers where
the hub boundary condition was satisfied in the ultimate wake; however,
it has not been shown that this bears any relation to satisfying the
boundary condition in the vicinity of the propeller The possibility of
satisfying the hub boundary condition in the vicinity of the propeller by
using a surface source density on the hub is being considered. A
method similar to that used by Smith and Hess (Ref. 12) would be used.
Until the hub boundary condition is examined in some such fairly rigor-
ous fashion, there will always remain a doubt as to the adequacy of
even a lifting-surface design method.

Negative Numbers of Illustrations: None
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2 Maritime Administration
Division of Research (I\
Division of Ship Design (1)

3 California Institute of Technology, Pasadena
Prof. A. 3. Acosta (I)
Prof. M. S. Plesset (1)
Prof. T. Y. Wu (1)

3 Convair, San Diego
A. D. MacLellan (1)
H. T. Brooke (I)
R. H. Oversmith (1)

I Davidson Laboratory, Stevens Institute of Technology, Hoboken, N.J.
(J. P. Breilin)

I Dynamics Developments, Inc., Oyster Bay, N.Y.

1 Electric Boat Division, General Dynamics Corporation, Groton, Conn.
(Robert McCandliss)

I Gibbs and Cox, Inc., New York City
3 Grumman Aircraft Engineering Corporation, Bethpage, N. Y.

E. Baird (1)
E. Bower (1)

I Lockheed Aircraft Corporation, Missiles and Space Division, Palo
Alto, Calif. (R. IV. Kermeen)

I Lockheed - California Company, Burbank (Hydrodynamics Research,
K. E. Hodge)

I Massachusetts Institute of Technology, Cambridge (Prof. M. A.
Abkowitz, Department of Naval Architecture and Marine Engineering)

I Ordnance Research Laboratory, Pennsylvania State University,
University Park (Dr. G. F. Wislicenus)

I Society of Naval Architects and Marine Engineers, New York City
3 Southwest Research Institute, Department of Mechanical Sciences,

San Antonio
Dr. H. N. Abramson(l)
G. Ransleben (1)
Editor, Applied Mechanics Review (I)

I Stanford University, Stanford, Calif. (Department of Civil Engineering,
Dr. E. Y. Hsu)

I State University of Iowa, Iowa Institute of Hydraulic Research, Iowa
City (Dr. L. Landweber)

I The Boeing Company, Seattle (M. J. Turner)
I The University of Michigan, Ann Arbor (Department of Naval Archi-

tecture, Prof. R.B. Couch)
I University of California at Los Angeles (Department of Engineering,

Dr. A. Powell)
I University of Minnesota, St. Anthony Falls Hydraulic Laboratory,

Minneapolis (Dr. L. G. Straub)
I Webb Institute of Naval Architecture, Glen Cove, N.Y. (Technical

Library)
I Adm Exp Works, Haslar, Gosport, Hants, England (Superintendant,

A. J. Vosper), via BuWeps (DSC)



I Bassin d'Essais des Carenes, Paris XVe, France (Director, Vice
Adm. Roger E. Brard), via BuWeps (DSC)

England, (H'. Lackenby), via BuWeps (DSC)
I Canal de Esperiencias Hidrodinamicas, El Prardo, Madrid, Spain

(Director, Sr. M. Acevedo y Campoamor), via BuWeps (DSC)
I Det Norske Veritas, Oslo, Norway (Managing Director, Dr.G.Vedeler),

via BuWeps (DSC)
2 Hamburgische Schiffbau-Versuchsanstalt, Bramfelder Strasse 164,

Hamburg, Germany, via BuWeps (DSC)
Dr. H. W. Lerbs (1)
Dr. 0. Grim (1)

1 Hydro-og Aerodynamisk Laboratorium, Lyngby, Denmark (Prof.

Carl Prohaska), via BuWeps (DSC)
1 Institut de Recherches de la Construction Navale, Paris, France

(Director General, Dr. J. Dieudonne), via BuWeps (DSC)
I Institut fir Schiffbau der Universitat Hamlurg, Berliner Tor 21,

Hamburg, Germany (Director, Prof. G. P. Weinblum), via BuWeps
(DSC)

1 Instituto Nazi6nale per Studi ed Esperienze di Architettura Navale,
via della Vasca Navale 89, Rome, Italy, via BuWeps (DSC)

1 National Council for Industrial Res, TNO, The Hague, Netherlands
(Prof. Laurens Troost, Jr.), via BuWeps (DSC)

1 National Physical Laboratory, Feltham, Middlesex, England
(Director, Ship Division, A. Silverleaf), via BuWeps (DSC)

1 National Research Council, Ottawa, Canada (E. S. Turner), via
BuWeps (DSC)

1 Nederlandsch, Scheepsbouwkundig Proefstation, Wageningen, The
Netherlands (Dr. J. D. van Manen), via BuWeps (DSC)

I Office, Natl d'Etudes et de Recherches Aeronautiques, Chatillion,
Paris, France (Dr. L. Malavard, via BuWeps (DSC)

1 Skipsmodelltanken, Trondheim, Norway (Prof. J. K.Lunde), via
BuWeps (DSC)

1 Staten Skeppsprovningsanstalt, Goteborg c, Sweden (Director,
Dr. Hans Edstrand), via BuWeps (DSC)

I Technische Hogeschool, Institut voor Toegepaste, Wiskunde,
-Julianalaan, 132, Delft, Netherlands (Prof. R.Timman), via BuWeps
(DSC)

I Versuchsanstalt fu'r Wasserbau und Schiffbau, Schleuseninsel im
Tiergarten Berlin, Germany (Director, Dr. S. Schuster), via
BuWeps (DSC)

I William Denny & Bros. Ltd., Exper Tank, Leven Shipyard, Dumbarton,
Scotland (W. P. Walker), via BuWeps (DSC)
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